EMERGING OCCUPATIONAL LUNG DISEASES IN MINERS

Cecile Rose, MD, MPH
National Jewish Health and University of Colorado
RMAOEM
January 30, 2015
Disclosures

- Clarifying Distribution, Trends, and Determinants of Adverse Health in US Miners -- Alpha Foundation for the Improvement of Mine Safety and Health (Co-Investigator)

- Black Lung Clinics Program and Radiation Exposure Screening and Education Program grants -- Health Resources and Services Administration (Principal Investigator)
Objectives

- Describe recent epidemiologic trends in coal mine dust lung disease (CMDLD)
- Describe the broader spectrum of CMDLD
 - Rapidly progressive pneumoconiosis
 - COPD and emphysema from exposure to coal mine dust and silica dust
 - Dust related diffuse fibrosis
 - Silicoproteinosis
 - Lung cancer from respirable silica
 - Simple and complicated CWP
Recent trends in occupational lung disease in U.S. miners are of great concern.

- Doubling of tenure-adjusted radiologic Coal Worker’s Pneumoconiosis (CWP) prevalence from 1990 to 2008 (NIOSH WoRLD Report, 2008)
- Increasing CWP mortality (years of potential life lost) (MMWR 2009)
- Severe CWP cases among young miners who worked exclusively under current dust exposure limits (MMWR 2006)
- Rapidly progressive CWP (Antao et al., 2005)
Percent of miners with Coal Workers’ Pneumoconiosis (CWP) by tenure in mining, 1970-2006

Source: NIOSH Coal Workers’ X-ray Surveillance Program (CWXSP) as cited in NIOSH 2007 WoRLD Report, Figure 2-4.
Rapidly progressive coal workers’ pneumoconiosis in the United States: geographic clustering and other factors

V C dos S Antao, E L Petsonk, L Z Sokolow, A L Wolfe, G A Pinheiro, J M Hale, M D Attfield

Results from NIOSH Coal Workers’ Health Surveillance Program, 1996-2002. Not shown are counties with fewer than 5 miners evaluated.
Specific findings of CWP and PMF

- 29,521 miners examined (1996-2002)
 - 886 cases (3%) with CWP
- 783 miners evaluated for progression
 - 277 cases (35.4%) of rapid progression
 - 41 cases of PMF (14.8%)
 - Stage A: 16 cases
 - Stage B: 20 cases
 - Stage C: 5 cases
Possible risk factors for rapidly progressive CWP

- Smaller mine > larger mine
- Longer tenure in jobs at face
- Younger > older
 - Implicating recent mining conditions
- Other factors
 - Mining techniques
 - Approaches to dust control
 - Inadequate enforcement of MSHA PEL
Case 1

- 55 year old underground coal miner from southwestern Virginia
- Worsening symptoms of cough, sputum production, and shortness of breath
- 23 pack-year tobacco smoke exposure
Case 1: Occupational History

- Began work as an underground coal miner in 1980
- Worked mainly as a roof bolter for 23 years until 2003
- Left work due to worsening chest symptoms
Case 1 Diagnosis: Coal Mine Dust Lung Disease

- Rapidly progressive coal worker’s pneumoconiosis with Category C progressive massive fibrosis
- Background of simple pneumoconiosis
Current Concepts: Coal Mine Dust Lung Disease (CMDLD)

- Rapidly Progressive Pneumoconiosis
- **Chronic Obstructive Pulmonary Disease**
 - Emphysema/Chronic Bronchitis
- Dust Related Diffuse Fibrosis (DDF)
- Simple and complicated CWP
- Silicoproteinosis (acute/accelerated)
- Lung cancer (probably due to silica)
Chronic Bronchitis and Coal Dust

- U.S. and British cross sectional studies show relationships between symptoms of cough, sputum, wheezing and breathlessness and:
 - Duration of exposure - years
 - Cumulative exposure to respirable dust
 - Dust exposure and cigarettes contribute independently
- Symptoms of bronchitis correlate with loss of FEV1
- Once symptoms develop, decline in function may continue after exposures ceases.
Coal Mine Dust Emphysema
Autopsy Studies: Emphysema & Coal Dust

- Emphysema is more frequent in miners than non-miners. (*Ryder 1970*)
- Severity of centrilobular emphysema is related to findings of dust in lungs. (*Cockcroft 1982*)
- Amount of dust in lungs correlates with presence of emphysema. (*Ruckley 1984*)
- Extent of emphysema in smoking miners is related to coal dust content of lungs and to smoking. (*Leigh 1982*)
- In lifelong nonsmoking coal miners, extent of emphysema is related to coal dust content and age. (*Leigh 1983, 1994*)
Emphysema and Coal Dust (Kuempel 2009)

- 722 Autopsied Miners from the NCWAS
- Graded emphysema severity
- Cumulative exposure to dust predicted emphysema severity
- Dust exposure and cigarette smoking predicted emphysema similarly
- **Coal Dust, Smoking, Age, and Race** were all significant predictors of emphysema severity
Emphysema Scores By Smoking & Mining Status

<table>
<thead>
<tr>
<th>Group</th>
<th>Never Smokers</th>
<th>Ever Smokers</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Miners</td>
<td>295 36.4</td>
<td>392 16.3</td>
<td>0.0015</td>
</tr>
<tr>
<td>Non-Miner Controls</td>
<td>46 15.5</td>
<td>152 18.4</td>
<td>0.0038</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.0001</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>
Silica and COPD: with & without CXR changes

- Decrement in lung function (FEV1) from respirable silica:
 - Occupational quartz exposure with spirometric airflow limitation in Norwegian men ages 30–46 years (Humerfelt 1998)
 - Swedish granite crushers, excess loss of FEV1 and reduced FEV1/FVC ratio (Malmberg 1993)
 - South African gold miners (Hnizdo 1992)
 - Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence (Hnizdo and Vallyathan 2003)

- Obstructive lung function decrements are also seen in concrete workers, diatomaceous earth workers, and pottery workers exposed to silica.
Silicotic nodule with emphysema
Case 2: History

- 57 year old male with progressive SOB, cough, sputum production, and wheezing since 1990. Reports DOE 100 feet and 1 flight of stairs.
- Smoked 1 ppd for 32 years, quit in 2003
- Occupation – school janitor
- Evaluated in 2005 and found to have 2.5X 5.5 polygonal shaped RUL mass.
Case 2: History

- Lives in Indiana on a small farm
- Fixed old tractors and cars for many years
- No pets, does not work in agriculture
- Hobbies: deer hunting and fishing
- Physical Exam: Normal except for mild coarse wheeze on expiration
Case 2: Additional Occupational History

- 13 years of work as a coal miner with 11 years underground in 28” - 46” coal
 - Continuous Miner Operator
 - Drill operator
 - Roof bolter
 - Shuttle car operator and general inside laborer

- Worked in small mines in eastern Kentucky between 1969 and 1988
Pulmonary function testing: spirometry

<table>
<thead>
<tr>
<th>Spirometry</th>
<th>Ref</th>
<th>Pre Meas</th>
<th>Pre % Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC Liters</td>
<td>4.57</td>
<td>4.43</td>
<td>97</td>
</tr>
<tr>
<td>FEV1 Liters</td>
<td>3.65</td>
<td>2.92</td>
<td>80</td>
</tr>
<tr>
<td>FEV1/FVC %</td>
<td>80</td>
<td>** 66</td>
<td></td>
</tr>
<tr>
<td>FEV1/SVC %</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75% L/sec</td>
<td>3.61</td>
<td>** 1.76</td>
<td>** 49</td>
</tr>
<tr>
<td>PEF L/sec</td>
<td>6.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF/FIF50</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FET100% Sec</td>
<td>10.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PFTs: Normal lung volumes, low DLCO

<table>
<thead>
<tr>
<th>Lung Volumes:</th>
<th>Ref</th>
<th>Pre Meas</th>
<th>Pre % Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>Ltrs</td>
<td>4.57</td>
<td>4.49</td>
</tr>
<tr>
<td>TLC</td>
<td>Ltrs</td>
<td>6.59</td>
<td>5.95</td>
</tr>
<tr>
<td>RV</td>
<td>Ltrs</td>
<td>2.01</td>
<td>1.45</td>
</tr>
<tr>
<td>RV/TLC</td>
<td>%</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>FRC PL</td>
<td>Ltrs</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>FRC N2</td>
<td>Ltrs</td>
<td>3.36</td>
<td>3.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diffusion</th>
<th>Ref</th>
<th>Pre Meas</th>
<th>Pre % Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCO</td>
<td>33.8</td>
<td>15.1</td>
<td>45</td>
</tr>
<tr>
<td>DL Adj</td>
<td>33.8</td>
<td>15.4</td>
<td>46</td>
</tr>
<tr>
<td>DLCO/VA</td>
<td>5.24</td>
<td>2.91</td>
<td>56</td>
</tr>
<tr>
<td>DL/VA Adj</td>
<td></td>
<td></td>
<td>2.97</td>
</tr>
<tr>
<td>VA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHT</td>
<td></td>
<td>10.11</td>
<td></td>
</tr>
<tr>
<td>DLCO ECode</td>
<td></td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>IVC</td>
<td></td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td>85% Measured VC</td>
<td></td>
<td></td>
<td>3.82</td>
</tr>
</tbody>
</table>
Exercise physiology

--- EXERCISE TEST SUMMARY RESULTS ---

<table>
<thead>
<tr>
<th>WORK CAPACITY</th>
<th>Base</th>
<th>AT</th>
<th>Peak VO2</th>
<th>Peak VO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO2 L/min</td>
<td>0.320</td>
<td>1.020</td>
<td>1.858</td>
<td>78</td>
</tr>
<tr>
<td>VO2/kg mL/kg/min</td>
<td>4.0</td>
<td>12.9</td>
<td>23.5</td>
<td>78</td>
</tr>
<tr>
<td>Work Watts</td>
<td>0</td>
<td>62</td>
<td>142</td>
<td>78</td>
</tr>
<tr>
<td>%VO2 @ AT</td>
<td>0</td>
<td>** 41</td>
<td>** 41</td>
<td>78</td>
</tr>
</tbody>
</table>

INDICES OF GAS EXCHANGE

<table>
<thead>
<tr>
<th>Test Level</th>
<th>pH</th>
<th>PaCO2</th>
<th>PaO2</th>
<th>HCO3-</th>
<th>SaO2</th>
<th>SpO2</th>
<th>A-aDO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>7.42</td>
<td>36.4</td>
<td>91.8</td>
<td>23.4</td>
<td>91</td>
<td>99</td>
<td>11.7</td>
</tr>
<tr>
<td>Peak VO2</td>
<td>7.34</td>
<td>33.9</td>
<td>64.2</td>
<td>17.9</td>
<td>87</td>
<td>91</td>
<td>50.5</td>
</tr>
</tbody>
</table>
Dust Related Diffuse Fibrosis (DDF)
Case 2 Diagnosis:
Coal Mine Dust Lung Disease

- Emphysema due to coal mine dust
- Dust - Related Diffuse Fibrosis (DDF)
Dust Related Diffuse Fibrosis (DDF)

- Disease often confused with Idiopathic Pulmonary Fibrosis (IPF)
- Cannot be idiopathic when there is significant exposure to mineral dust
- Irregular opacities on CXR with decreased diffusion capacity on lung function and restrictive impairment
- Bridging fibrosis connecting macular, nodular, or PMF lesions
- Pigmented interlobular septal thickening
Histology of DDF

- Interstitial fibrosis resembling UIP
- Micro and macro nodules
IPF (Idiopathic Pulmonary Fibrosis)

By international consensus\(^1\) the diagnosis of IPF requires

- ‘Exclusion of other known causes of ILD (e.g., domestic and occupational/environmental exposures, connective tissue disease, and drug toxicity).’

- There is no basis for this diagnosis in a patient with substantial occupational exposure to fibrogenic dust.

Dust Related Diffuse Fibrosis

- Welsh coal miners with DDF presented at younger ages and lived longer (McConnochie, Annals Occup Hyg, 1988)
 - Age 55.5 ± 7 years
 - Survival 11.4 ± 5 years
 - DDF was present in 15 - 20% of miners’ lungs in autopsy series
 - Much greater than IPF in the general population

- Several other articles have described clinical findings typical for IPF in mining populations. (Monso, Arch Environ Health 1990; Brichet, Rev Mal Respir 1997)
Classical Teaching: Coal Workers’ Lung Diseases

- Simple Pneumoconiosis: small scars < 10 mm
- Progressive Massive Fibrosis > 10 mm lesions
- Workers exposed to mixed dust may get silicosis or mixed-dust pneumoconiosis
- Caplan’s Syndrome – Rheumatoid Pneumoconiosis
Coal Workers’ Pneumoconiosis (CWP)

Progressive massive fibrosis
Complicated pneumoconiosis

Source: NIOSH Coal Workers’ X-ray Surveillance Program (CWXSP)
Concise Clinical Review

Coal Mine Dust Lung Disease
New Lessons from an Old Exposure

Edward L. Petsonk1, Cecile Rose2,3, and Robert Cohen4

1Section of Pulmonary and Critical Care Medicine, Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia; 2Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, Colorado; 3Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado; and 4Division of Pulmonary and Critical Care Medicine, Department of Medicine, John Stroger Hospital, Cook County Health and Hospitals System, Chicago, Illinois
Acknowledgements

- **Robert Cohen, MD**
 - University of Illinois Chicago and Northwestern University

- **Edward Lee Petsonk, MD**
 - West Virginia University, Morgantown, WVA

- **Anthony Scott Laney, PhD**
 - NIOSH/DRDS, Morgantown, WVA

- **Francis H.Y. Green, MD**
 - University of Calgary, Calgary

- **NJH Miners Clinic team** (Bibi Gottschall MD, MSPH; Maura Robinson, Wendy VonHof)
Questions?